Hier finden sich Erklärungen zu den wichtigsten Begriffen
aus der Welt der Künstlichen Intelligenz.
Accuracy
Adapter
Advanced Query Parsing
Agent
Agentic Behaviour
AGI
AI Engineering
AI Role
Answer Correctness
Answer Relevancy
Assistant Role
Asynchronous Task Handling
Attention
Attention Header
Attention Layer
Attention Mechanisms
Automated Prompt Generation
Basis Model
Benchmark
BERT
Bias
bitsandbytes
Causal Language Model
Causal Reasoning Models
Chain
Chain-of-Thought Prompting
Chatbots
Chunk
Chunking
Cognitive Architecture
Concept Drift
Conditioning
Context Augmentation
Context Management
Context Precision
Context Recall
Context Window
Contextual Embedding Adaptation
Conversational Memory
Critic Model
Data Agent
Data Annotation
Data Privacy
Data Streaming
databricks-dolly-15k
Decoder
Decoding Strategies
Deployment
Distributed Systems
Dolly
Efficacy
Embeddings
Embeddings Management
Emergent Abilities
Emergent Properties
Entity Recognition
Evaluation
Evaluation of Long Text
Execution Agent
Explainability
Exploration
External Information Retrieval
Extraction
Fact-checking Models
Factoid
Failure Mode
Few-shot Learning
Fine-tuning
Foundational Model
GPT (Generative Pretrained Transformer)
GPT-4
Gradient Descent
Gradient-based Optimization
Grounding
Hallucination
Hands-on LLM
Hard Prompt
Hard Selection
Header Attention
Hugging Face
Hyperparameter
Hyperparameter Tuning
Information Retrieval
Inference
Interpretability
Iterative Prompting
Keyphrase Extraction
Knowledge Augmentation
Knowledge Distillation
Knowledge Graphs
LaMDA
Language Model Evaluation
Large Language Models (LLMs)
Latent Space
Lexical Semantics
Llama Index
Load Balancing
LoRA (Low-Rank Adaptation)
Loss Function
Machine Learning
Masked Language Model (MLM)
Memory in LLMs
Meta-learning
Meta-prompt
Model Architecture
Model Compression
Model Interpretability
Model Optimization
Model Scalability
Model Training
Model-based Reasoning
Multimodal Models
Multitask Learning
Named Entity Recognition (NER)
Natural Language Processing (NLP)
Natural Language Understanding (NLU)
Neural Architecture Search
Neural Networks
Next Word Prediction
NLP Pipeline
Noise Contrastive Estimation
Optimization
Parameter-efficient Training
Parameterization
Pattern Recognition
Perplexity
Polyglot Models
Post-training Optimization
Predictive Text
Pretrained Language Models
Prompt Chaining
Prompt Engineering
Q-learning
Quantum Machine Learning
Query Optimization
Reinforcement Learning
Responsible AI
Retrieval-based Models
Reusability
Reward-based Learning
RLHF
Samplers
Scaling
Self-supervised Learning
Semantic Analysis
Semantic Search
Semi-supervised Learning
Sentiment Analysis
Sequence Modeling
Stability
Stable Diffusion
Stochastic Gradient Descent (SGD)
Summarization
Supervised Learning
Synthetic Data Generation
Targeted Data Augmentation
Task-oriented Models
Temporal Modeling
Text Classification
Text Generation
Text Preprocessing
Text-to-Image Generation
Tokenization
Transfer Learning
Training Data
Transformer Models
Unsupervised Learning
Validation
Variational Autoencoders (VAE)
Wasserstein GANs
Weak Supervision
Zero-shot Learning
Zero-shot Transfer
©Urheberrecht. Alle Rechte vorbehalten.
Wir benötigen Ihre Zustimmung zum Laden der Übersetzungen
Wir nutzen einen Drittanbieter-Service, um den Inhalt der Website zu übersetzen, der möglicherweise Daten über Ihre Aktivitäten sammelt. Bitte überprüfen Sie die Details in der Datenschutzerklärung und akzeptieren Sie den Dienst, um die Übersetzungen zu sehen.